
Large scale acquisition and maintenance from the web
without source access

Thomas Leonard
tal00r@ecs.soton.ac.uk

Hugh Glaser
hg@ecs.soton.ac.uk

University of Southampton
Southampton SO17 1BJ UK

ABSTRACT
Although different web sites structure their pages differently,
the pages within a single site are often generated from a
database and have a regular layout from which it is possible
to extract information automatically.

Dome is a visual tool for manipulating tree-structured docu-
ments. It can import and export in XML or HTML formats,
making it ideal for harvesting information from web pages.
Editing is performed using a direct manipulation interface
and the operations are recorded for later playback.

The knowledge extracted from a web page may be updated
by replaying the recorded sequence when the source page
changes. The same sequence can be applied to other pages
with a similar format, and facilities are provided to batch
process a large collection of pages in one operation.

In this paper we describe how Dome may be used to extract
knowledge from web sites in such a way that the extraction
process may be reliably replayed.

Keywords
Knowledge acquisition tools, Programming by demonstra-
tion systems, Programming by example, Visual languages,
XML editors

INTRODUCTION
Recent interest in the semantic web, Tim Berners-Lee and
others’ vision to make web pages’ inherent knowledge di-
rectly accessible to machines, has produced a desire for know-
ledge extraction systems which work on existing web pages.

While, in the longer term, Natural Language Processing
(NLP) tools of great complexity are needed, these tools do
not yet exist. In the medium term, or when a high level of
confidence in the accuracy of the results is required, a more
‘programmed’ approach can be used.

There are a number of tools available for specifying the au-
tomatic extraction of knowledge from web pages, but they
usually require the user to enter complex query commands.

For example, Web-OEM allows HyperText Markup Lan-
guage[7] (HTML) documents to be queried like a relational
database, using Structured Query Language (SQL) syntax.
It also provides a mechanism to create Extensible Markup
Language[6] (XML) files from the results by specifying a
template, as in this example (taken from [2]):

CONSTRUCT<EMAIL>x1.text</EMAIL><TEL>x2.text</TEL>

FROM Page:p, Table:t, Text:x1, Text:x2

WHERE p.title="My home page" AND

t IN p.structures.* AND

x1=t.row[0].elements[1] AND

x2=t.row[2].elements[1]

In this paper, we describe a visual tool which can perform
such tasks easily using direct manipulation, while still al-
lowing the operation to be replayed later.

In particular, we will show how knowledge may be extracted
from an entire site, and how that knowledge can be kept up-
to-date.

DOME
Dome is a visual language which focuses on manipulation
of tree-structured data. This makes it ideal for processing
XML and HTML documents.

The program may be used simply as an editor, and supports
the familiar editor operations such as cut, copy, and paste.
Once the editing of documents using these direct manip-
ulation operations is mastered, the user may easily string
operations together to form programs.

The main window is divided into three parts (see figure 1):



Figure 1: Dome’s main window, showing a page from our department’s site. The darker nodes in the
document (HEAD, TABLE and P) are collapsed nodes — this feature allows unimportant elements to be hidden,
reducing screen clutter.

The Document The main area, on the right, shows the
data that the user is editing. In our case, this is the
HTML of the web page, showing its tree structure.

The layout should be readable to anyone who knows
HTML. A vertical line represents a sibling relation-
ship between nodes, while a diagonal line indicates a
parent–child relationship.

The single exception to this rule is the ‘TR’ element,
which is used to create a row of cells in HTML. Dome
lays out the child nodes of a TR element horizontally
to save space and to make it look closer to the way it
appears in a browser.

The Programs List Each sequence of operations that the
user has recorded is displayed in the top-left corner
of the screen. The programs can be organised into a
hierarchy if there are a large number of them.

The tree of collapsable nodes behaves like the directory
list in Microsoft’s Explorer program.

The Program Display The operations of the currently
selected program are displayed below the program list.

This is a control flow diagram — control normally
passes downwards along the dark lines. The fainter
diagonal lines are used when execution of a operation
fails for some reason. A dotted line (as seen in figure 2)
indicates a breakpoint, where execution stops to allow
the user to examine the state of the system.

The user can also use this area to correct mistakes in
recordings and to record alternative cases.

The most important operation for our purposes is that of
selecting a piece of information. There are three common

ways of selecting a node in the document:

1. A structured relative move is performed for any node
clicked on. Dome records the operation as an XPath[5]
which will select that node relative to the current node.
For example, “Move to the first cell of the next row.”.

2. A non-structured text search — for example “Find the
word ‘Name:’ anywhere in the page.”.

3. A structured search which also requires a literal match
of the text of the node clicked — “Move to the first cell
of the next row, which must contain the text ‘Name:’.”.
This is done using a vendor extension of the XPath
syntax.

Although all three methods may be used to select the same
node, choosing the correct method is crucial to making the
operation replayable.

The first is the easiest and is quite tolerant of changes to
document structure. It is sufficient for many purposes, es-
pecially if the document’s structure is unlikely to change.

Either of the other two may be performed first to make
the search more reliable or more strict. Consider a table
row containing two cells: the literal string “Name:” and
the name itself. By using method 3 to select the literal
string and then using method 1 to select the name itself,
the recorded sequence will not be fooled by a table with a
new first row – it will fail with an error instead of selecting
the wrong node.

By contrast, using the second method to search for the string
“Name:” and then using method 1 to select the actual name
will still work correctly even if a new row is added. However,



Figure 2: Dome in the middle of processing a research group’s site. A page containing links to all members
of the group has been automatically fetched and the links extracted from it. Each link in turn is replaced
by the knowledge extracted from the linked page. The program displayed is the ‘enter–fetch–process–leave’
program — it was stopped for the screenshot by setting a breakpoint (the dotted line) while the program
was running.

it is also more susceptible to selecting the wrong node alto-
gether if “Name:” appears somewhere else in the document.

PROCESSING ONE PAGE
In a typical editing session, the user will load a web page
from the site of interest into Dome. Then, for each piece of
information that needs to be extracted, they will record a
program to extract that information.

For example, if the aim is to collect product details, the user
may create a program called ‘Name’ by performing whatever
actions are required to extract the product’s name. This is
often as simple as scrolling down to find the name, selecting
it, and then using copy and paste to bring it to the top of
the document, perhaps placing it under a new element node
called ‘Name’.

The process will then be repeated to create programs called
‘Price’, ‘Order code’ and so on. Once all the data have been
collected, the rest of the document is deleted, leaving a neat
XML record to be saved out.

Although it is possible to record all the actions in a single
program, we find that it is easier to cope with errors (such
as a product with no order code) if each piece of information

is extracted separately.

To extract information from a similar page, the user may
load the page in and click on each program in turn to run
it. Once confident with the function of each program, the
user will normally start recording a new program and then
click on each of the previous programs in turn to create a
master program that processes a whole page in one go.

PROCESSING A WHOLE SITE
When processing a whole site, two extra features of Dome
are useful:

• Dome includes facilities to fetch a page referenced by
a Universal Resource Identifier (URI) in a document.
It does this by replacing the anchor element node (A,
for example) with the contents of the page fetched.

• Dome allows a subnode in the document to be treated,
temporarily, as the document root (called ‘entering’
the node). ‘Leaving’ the node returns to the previous
root node.

To process an entire site, the following steps are typically
used:



Figure 3: The extracted knowledge, converted to RDF.

1. Load a page which references all the subpages to be
harvested.

2. Record a program which extracts all the relevant ‘an-
chor’ nodes from that document.

3. Select the first node and record a program which en-
ters the node, fetches the HTML document, runs the
program which processes one page, and then leaves
the node. This has the effect of replacing the reference
to the page with the information extracted from the
page.

4. Select the remaining nodes and ‘map’ the previous
program (Dome will run the enter–fetch–process–leave
program on each of the selected nodes).

This generates an XML document which is a list of pages
and their extracted information.

When each subpage is fetched, Dome records the URI it
used by adding a ‘uri’ attribute to the new element. This
is done mainly to allow relative URIs within the fetched
document to be resolved, but for our purposes it means that
each record in the XML file can be used just like the original
anchor — that is, we can rerun the ‘map’ operation, without
any modifications, to update every record.

This is useful if extracting the anchor nodes had to be done
manually. If processing the index document is trivial then
it is, of course, better to run the whole thing again from the
start to cope with newly added or removed pages.

ROBUSTNESS
It may be that, while processing a site, Dome hits a page
which has a structure different from that expected. For ex-
ample, a product which has no order code (perhaps because
it is out of stock).

In making the system more robust to changes in the struc-
ture of the document there are two points to consider:

• Making sure that any significant change is detected
and reported to the user. The system should not sim-
ply generate incorrect output. This is best achieved
using a structured-literal search, as discussed previ-
ously.

• Handling structural changes when they are detected.

In this case, the program will fail and execution stops
at the point of failure. Dome displays the steps of the
program that failed and asks the user if they would like
to record a ‘failure case’. The user agrees and proceeds
to take the required actions (perhaps by selecting the
‘out-of-stock’ text, instead of the missing order code
element, and bringing that to the top).

In this way, the user builds up a list of exceptions which
allow Dome to process the entire site.

EXPORTING THE RESULTS
Dome can be used to export the results in a variety of for-
mats. If some format other than plain XML is required,
another program may be used to convert to that format
(still using Dome). More usefully, several programs may
be employed to export the same knowledge in a variety of
formats.

For example, it is very easy to convert a list of XML records
into an HTML table. Add the required HTML elements
(HTML, HEAD, BODY, etc) and then use Dome’s save-as-HTML
feature to create a document ready to publish on the web.

For use in knowledge systems, records may be converted to
Resource Description Framework[4] (RDF) format, as shown
in figure 3, perhaps using a semantic vocabulary such as
Dublin Core[1].



CURRENT STATUS
Dome is a research prototype, currently implemented in the
Python[3] programming language, on Linux. It uses the
GTK[8] toolkit for the user interface, and the 4Suite XML
tools[9].

It has already been successfully used to extract information
about researchers from a number of UK sites. The exam-
ples in this document are taken from the web site of one
of our department’s groups. As a rough speed guide, ex-
tracting personal details from the 122 individual web-pages
linked from the group’s ‘Complete List of People’ page takes
around 20 minutes on a typical desktop system.

Much of this time is spent in network communication and
in importing the HTML, which is done in two stages. The
HTML is first piped through the Web Consortium’s ‘Tidy’
program to correct broken HTML, then the result is parsed
using the 4Suite tools.

CONCLUSIONS AND FUTURE WORK
In this paper we have shown how Dome may be used to ex-
tract information from web pages into appropriately format-
ted XML documents. We have seen how to process many
pages automatically and we have looked at ways of mak-
ing the extraction process robust to changes in document
structure.

There are several other areas where parsing structured web
pages is useful. Metasearchers search the web by querying
many other search engines and combining the results, but
since they may have to perform millions of searches a day,
speed requirements dictate the use of hand-coded parsers.
However, Dome is well-suited to tasks such as creating a
news roundup by taking headlines from a number of other
sites, as this only needs to be done every few minutes.

Some aspects of Dome may be improved — for example,
there is potential for a considerable speed increase if web
pages could be retrieved in parallel with processing opera-
tions.

Object-oriented features may be added at some point, so
that ‘programs’ become ‘methods’ that work on a class hi-
erarchy of element tags. While this is not immediately use-
ful for HTML, it will improve Dome’s ability to handle the
structured XML records produced from the HTML.

Even in its current state, we feel that Dome is already a
useful tool for anyone wishing to process web pages in a
structured and repeatable way.

1. REFERENCES
[1] The Dublin Core Metadata Initiative Available

at http://dublincore.org/.

[2] Iocchi, Luca. The Web-OEM approach to Web
information extraction. Journal of Network and
Computer Applications (1999) 22, 259–269.

[3] The Python programming language.
http://www.python.org/.

[4] The World Wide Web Consortium. Resource
Description Framework.
Available at http://www.w3.org/RDF/.

[5] The World Wide Web Consortium. XML Path
Language (XPath).
Available at http://www.w3c.org/TR/xpath.

[6] The World Wide Web Consortium. Extensible Markup
Language (XML).
Available at http://www.w3.org/XML/.

[7] The World Wide Web Consortium. HyperText Markup
Language. Available at http://www.w3.org/MarkUp/.

[8] The GIMP Toolkit. http://www.gtk.org/.

[9] Fourthought, Inc. Open source XML processing tools.
Available at http://4Suite.org/.


